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Abstract
Background: From the original studies investigating the
effects of adrenal gland secretion to modern high-
throughput multidimensional analyses, stress research has
been a topic of scientific interest spanning just over a
century. Summary: The objective of this review was to
provide historical context for influential discoveries, sur-
prising findings, and preclinical models in stress-related
neuroimmune research. Furthermore, we summarize this
work and present a current understanding of the stress
pathways and their effects on the immune system and
behavior. We focus on recent work demonstrating stress-
induced immune changes within the brain and highlight
studies investigating stress effects on microglia. Lastly, we
conclude with potential areas for future investigation con-
cerning microglia heterogeneity, bone marrow niches, and
sex differences. Key Messages: Stress is a phenomenon that
ties together not only the central and peripheral nervous
system, but the immune system as well. The cumulative
effects of stress can enhance or suppress immune function,
based on the intensity and duration of the stressor. These

stress-induced immune alterations are associated with
neurobiological changes, including structural remodeling of
neurons and decreased neurogenesis, and these contribute
to the development of behavioral and cognitive deficits. As
such, research in this field has revealed important insights
into neuroimmune communication as well as molecular and
cellular mediators of complex behaviors relevant to psy-
chiatric disorders. © 2024 The Author(s).

Published by S. Karger AG, Basel

Historical Introduction of Stress

Thewonder of the humanmind – that which governs the
rest of the body – has enchanted and puzzled philosophers
and scientists for millennia. One experience of great interest
is stress – the familiar feeling one gets when faced with a
challenge. Despite the widespread public use of the term
“stress,” it is usually described vaguely and ambiguously. For
example, it can refer to the event (stressor) or the response
(stress response) [1]. As once described by Hans Selye, the
man who coined the term, “everybody knows what stress is
and nobody knows what it is” [2]. To start our historical
review, it is best for us to start at the turn of the 20th century.
Many of the important events discussed in this review are
summarized in a timeline presented in Figure 1.
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In 1884, an article by the American philosopher and
psychologist William James posed an interesting question:
“Dowe run from a bear because we’re afraid or are we afraid
becausewe run?” [3]. James poses the idea that physiological
changes directly follow the perception of external stimuli,
and the sum of these internal changes is the experienced
emotion. This is the basis of the James-Lange theory of
emotion [4]. This assertion was met with much scrutiny by
the American physiologistWalter Cannon, who through his
experiments on severing afferent nerves of the sympathetic
division and assessing emotional response argued that the
feeling of emotion and the physiological changes that occur
in response to external stimuli are independent of one
another [5]. In the same work, Cannon coined the term
“fight-or-flight” to describe the state an animal goes into
when challenged with a threat. This state is marked by
physiological changes such as increased heart rate, venti-
lation, piloerection, and decreased digestion. Cannon later
went on to establish the idea of homeostasis [6], in large part
based onClaude Bernard’s work describing the constancy of
the “milieu interior” or “internal environment” of the body
(first event on Fig. 1 timeline) [7]. In this article, Cannon
emphasizes the role of the autonomic nervous system
(ANS) in keeping constant the factors of the interior en-
vironment and how changes in the external environment
excite reactions in this system and lead to disturbances.

In the 1930s, the Hungarian-Canadian endocrinol-
ogist Hans Selye was conducting experiments to identify
female sex hormones. These studies involved the in-
jection of various extracts into female mice. Curiously,
all the extracts produced the same results: adrenal gland
growth, thymic involution, and peptic ulcers in the
stomach and duodenum. Selye continued experiments
on female mice but instead of injecting them with
various extracts, he exposed them to stressful situations
such as cold exposure or forced running on a wheel.
These additional experiments yielded the same effects,
leading Selye to conclude that this syndrome arises from
the animal attempting to adapt to the changing con-
ditions. He called these combined effects the general
adaptation syndrome (also referred to as Selye’s syn-
drome) and organized it into three distinct phases (see
top-right corner of Fig. 1): the alarm phase, the phase of
resistance, and the phase of exhaustion [8]. He later
renamed general adaptation syndrome as the “stress
response,” or more simply “stress,” borrowing the term
from physics and inserting it into the medical lexicon
[9]. Selye continued to make further advancements in
the newly established field of stress research by de-
scribing information “mediators” between the brain and
peripheral organs [10], comparing the differences be-

tween healthy stress (“eustress”) and pathogenic stress
(“distress”) [11], and began to link stress biological
pathways with immunology [12].

Discovery of Stress Hormones and Their
Neurobiological Effects

The hormones secreted from the adrenal glands were
known to be necessary in facilitating physiological re-
sponses as far back as Cannon’s work [13, 14], but the
steroid compounds were not formally isolated from the
adrenal cortex until the 1930s through the efforts of
competing scientists and eventual 1950 Nobel laureates,
Edward Kendall and Tadeusz Reichstein (Fig. 1) [15].
Cortisol, called “compound F” by Kendall, was synthesized
a decade later [16]. All steroids secreted by the adrenal
gland would come to be known as corticosteroids, which
itself was broken into two classes: glucocorticoids (GCs)
and mineralocorticoids, also named by Selye [15, 17]. Of
note, it was Selye who emphasized that the stress response
is not solely due to the systemic release of adrenaline and
noradrenaline (catecholamines) from the adrenal medulla
but also the systemic release of cortisol (GC) from the
adrenal cortex that plays a role in the stress response [18].
Nearly 40 years later, GC release was found to be con-
trolled by communication between the hypothalamus,
pituitary gland, and adrenal gland. These insights estab-
lished the field of neuroendocrinology and initial con-
ceptualization of the brain-body connection known as the
hypothalamic-pituitary-adrenal (HPA) axis [19–21].

Later, the American neuroscientist Bruce McEwen
connected the stress response to brain regions previously
associated with memory and cognition. His seminal work
in the 1960s (see middle section of Fig. 1), through the use
of radioactive corticosterone, showed a high presence of
glucocorticoid receptors (GRs) in the rat hippocampus
[22]. He and his colleagues would go on to show further
retention of GCs in other rat brain regions [23], as well as
the hippocampus of nonhuman primates [24]. Around
this same time, estrogen (another steroid hormone) was
found to bind to intracellular receptors and enact tran-
scriptional changes in various tissues leading to mor-
phological changes [25]. These breakthroughs led to an
exciting question – could steroid hormones such as GCs
produced during stress influence the structure and func-
tion of neurons, and consequently entire brain regions?

A plethora of studies looking into how stress and GC
signaling affect neuronal structure within multiple brain
regions were published in the 1990s–2000s (see Fig. 1).
Early studies linking GC levels and memory loss in
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hippocampus [26] directed investigators to analyze the
structure of pyramidal neurons in the CA1, CA3, and
dentate gyrus [27–29]. These studies revealed that stress
caused dendritic retractions in pyramidal neurons of the
CA1 and CA3 regions and reduced cell counts within the
dentate gyrus – demonstrating a reduction in adult neu-
rogenesis. Intriguingly, antidepressants were found to
increase neurogenesis in the same region, linking de-
pression and stress with overlapping neurobiological al-
terations [30]. Other studies showed that patients with
psychiatric disorders such as depression or post-traumatic
stress disorder (PTSD) exhibit reduced hippocampal
volume [31, 32] which incorporated the hippocampus into
brain regions associated with mood disorders. Further
studies revealed that the prefrontal cortex (PFC) also had
high levels of GRs [33]. As such, exposure to chronic stress
caused dendritic retraction of PFC pyramidal neurons as
well [34–36]. Dendritic spines were also shown to decrease

on pyramidal neurons of the PFC following stress expo-
sure, with the largest deficits rising in the most distal
sections of the apical dendrites residing in layer I [37]. In
contrast, the amygdala, which is reciprocally connected to
the hippocampus and PFC [38], exhibited an expansion of
dendrites following stress exposure [39]. The orbitofrontal
cortex also exhibited dendritic expansion following re-
peated stress [35]. One potential cause in the differential
stress response between these regionsmay be differences in
expression of neurotrophic factors such as brain-derived
neurotrophic factor following stress exposure [40].

The Beginnings of Psychoneuroimmunology

The impact of stress responses on the immune system
and disease was recognized by the American psychologist
Robert Ader and American microbiologist Nicholas

Fig. 1. Timeline of prominent events and findings in stress research (1879–present).
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Cohen. Before their work, it was widely believed that the
immune system was autonomous – strictly independent
of the nervous system [41]. In a study that was initially
investigating taste aversion, rats were subjugated to in-
jections of cyclophosphamide, an immunosuppressing
agent, after they drank from saccharine-water solution to
condition them to avoid the sweetened water [42]. After
sufficient conditioning, Ader and Cohen force-fed the
rats the saccharine-water without injection of cyclo-
phosphamide to simply complete the experiment prop-
erly with extinction trials. What they did not expect was
the sugary water alone elicited a rather severe reaction
leading to the death of multiple rats. Ader and Cohen
hypothesized that avoidance was not the only thing
conditioned but also the immunosuppressive effects of
cyclophosphamide, effectively establishing a functional
connection between the brain with the immune system.
This work was foundational for the beginning of an
emerging new field called psychoneuroimmunology – a
term coined by Ader himself who would first use it in a
speech to the American Psychosomatic Society in 1980
(Fig. 1) [41]. This paved the way for breakthroughs in the
late 1970s and 1980s that showed inflammation could
alter neuronal signaling in the hypothalamus [43] and
bidirectional communication between the brain and the
immune system [44, 45]. Further studies showed how
stress could alter the immune system [46, 47] and in-
crease susceptibility to physical illness [48]. Specifically,
cytokines can engage in neuronal communication reg-
ulating GC release, and GCs can subdue further cytokine
release [49]. Concurrently, other studies were finding
immune abnormalities within patients diagnosed with
major depressive disorder (MDD) [48, 50] or schizo-
phrenia [46], laying the groundwork for further studies
investigating the relationship between the immune sys-
tem and complex brain disorders.

Preclinical Models of Stress

To study stress and its associated cluster of stress-
related psychiatric disorders, a multitude of preclinical
rodent models have been developed [51]. They can be
categorized based on the type of stressors they employ
(physiological, psychological, or both) and/or the dura-
tion of the model (acute vs. chronic). Examples of
commonly used rodent stress models are the social defeat
paradigm, chronic unpredictable stress (CUS), restraint
stress, and early-life stress (ELS).

The social defeat paradigm is a physiological and psy-
chological model that involves an intruder Sprague-Dawley

rat being attacked (defeated) by resident Long Evans rats
over the course of multiple days [52]. After being defeated,
intruder rats are confined in the same cage as their attackers
with only perforated plexiglass separating them, allowing
for intense visual, olfactory, and auditory stimuli to affect
the defeated rat. This paradigm is proposed to mimic
human stressors such as aggression, bullying, and chronic
subordination that contribute to the development of PTSD
[53]. Social defeat stress has been shown to promote social
avoidance and induce increases in pro-inflammatory cy-
tokines and blood-brain barrier dysfunction in mice, which
recapitulate some features of psychiatric conditions [54, 55].

CUS uses multiple randomized physiological and psy-
chological stressors to avoid acclimation. When first de-
veloped in the early 1980s (as shown in Fig. 1), experi-
menters primarily used physiologically related stressors
involving pain (shock exposure), hunger (food depriva-
tion), thirst (water deprivation), and exposure to noxious
conditions such as extreme heat [56]. In 1987, modifica-
tions to include more natural and milder stressors were
used to better simulate the continued mild stress in which
humans might endure [57]. These stressors included by
Willner were wet (soiled) bedding, tilted cage, radio noise,
constant lighting, and strobe light exposure. Nonetheless, it
is important to note to the reader that laboratories often
employ unique combinations of these stressors and for
various timespans [58]. Other names have been given to
this paradigm such as chronic variable stress [59] and
chronic mild stress [58] – but it should be stated clearly that
these all describe the same practical experimental set-up
[60]. CUS is model aspects of psychiatric disorders as the
regiment has been shown to induce passive coping be-
havior, workingmemory deficits, and synaptic loss [61, 62].

Restraint stress, originally devised in France to study
interactions between the nervous system and gastroin-
testinal tract (see Fig. 1) [63, 64], is a stressor in which
the animal is restricted to a small space in which they are
unable to move freely for a set period of time and this
duration varies from experiment to experiment [65].
Intriguingly, anxiety-like and depressive-like behaviors
are more repeatably and reliably observed in chronic
restraint paradigms (>6 days) [66]. This regimen was
used to show that hippocampal CA3 neurons undergo
atrophy of their apical dendrites following stress [67]. Of
note, repeated stress was used to discover circuit-specific
effects of stress on neuronal morphology in the in-
fralimbic region of the PFC, emphasizing that neurons
with different efferent projections can have divergent
stress effects [68]. Interestingly, shortened versions of
this regimen (5 min daily) have been shown to reverse
stress-induced behavioral deficits from longer versions
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(2 h daily), showing the potential adaptive features of
acute stress [69].

All the models listed previously involve stress exposure
in adulthood. However, data have shown that exposure to
stressful events early in life can have long-lasting con-
sequences, such as higher risk for development of de-
pression, anxiety, and cognitive impairments [70, 71].
Also, clinical data suggest that exposure to ELS
(i.e., childhood trauma) increases circulation of inflam-
matory biomarkers [72]. In order to model childhood
adversity or trauma, most ELS models employ a method
where parental/maternal care is reduced, because the
parent-child relationship is the source of most early-life
interactions [73]. Two models that manipulate this re-
lationship are intermittent maternal separation (MS) [74,
75] and limited nesting and bedding material [76, 77]. MS
involves keeping mice separated from their mothers and
their nest for 3 or more hours a day over the first two
postnatal weeks [74] which leads to increases in
depressive-like and anxiety-like behaviors [78] and al-
terations in HPA axis activity [79]. Intriguingly, “han-
dling” or shorter bouts of separation from the mother
(15 min daily) result in opposite effects of MS [78].
Limited nesting and bedding involves limiting nesting
material for the mother to build a nest for her pups [76]
which leads to a myriad of stress-related effects across
many mouse lines [80], including elevated corticosterone
levels [81] and altered exploratory and coping behaviors
in various tests [82, 83].

Components of the Stress Response: The ANS and the
HPA Axis

Research in the field of stress has demonstrated that
physiological and neurobiological systems are important
for adapting to stress. Exposure to stressful stimuli and
perception of threat activate two systems within the body,
the ANS and the HPA axis [84]. These systems function
as survival mechanisms and ready the body to respond to
the dangers at hand. McEwen developed the construct of
“allostatic load” to describe the long-term effect of the
physiological response to stress, applying the concept of
allostasis to stress theory. Allostasis is defined as stability
through change. He postulated that the accommodation
the body makes via the autonomic system and HPA axis
to protect the body from internal and external stress can
result in wear and tear either through chronic overactivity
or underactivity of the aforementioned neurobiological
systems [85]. Correlations were found between stressful
life events and an increased disposition to develop psy-

chiatric conditions such as depression, PTSD, and anxiety
disorders which researchers refer to as “stress”-related
psychiatric disorders [85–87].

Further studies of the body’s stress response havemade
it apparent that many other systems are affected after
exposure, one of them being the immune system [88, 89].
Both the HPA axis and the ANS act as extensions of the
nervous system, directly influence the function of the
immune system, and affect immune changes throughout
the body. Under normal conditions, the body only en-
counters stressful situations every now and then; how-
ever, certain conditions can lead to persistent or chronic
stress. Understanding the connection between chronic
stress and immune system activation is important be-
cause dysregulation of either part can lead to the de-
velopment of neurobiological deficits associated with
psychiatric disorders [90, 91].

The Role of the ANS in the Stress Response

The ANS functions to regulate involuntary actions of
the nervous system. At the most basic level, this system
controls the body’s ability to switch between a state of
“alertness and responsivity” and a state of “rest and
maintenance.” These two opposing states are mediated by
innervating systems called the sympathetic nervous
system (SNS) and parasympathetic nervous system
(PNS), respectively [92], and they can produce systemic
changes through its extensive innervation of most tissues
and organ systems in the body [93]. Neurons and nerves
within these systems potentiate signals through the re-
lease of either noradrenaline or acetylcholine neuro-
transmitters. Since both systems are tonically activated,
input from either can increase or decrease, and often have
opposing effects. Simultaneous increase in the activity of
one system and decrease in the activity of the other allow
the ANS to quickly change the body’s state in response to
threats. Therefore, the ANS is the first line of defense in a
situation where stress is encountered [94].

One example of the body’s response to stress is a rapid
increase in heart rate and blood pressure. This is driven
by sympathetic projections that increase activation of
cardiovascular tissues such as the heart and blood vessels
[93]. Other effects of increased sympathetic activation are
sweat secretion, dilation of blood vessels within skeletal
muscle, and constriction of blood vessels within the
gastrointestinal tract. All these actions work to direct
energy to the parts of the body that would need to re-
spond in the event that there is a threat to survival. These
effects as described here are carried out by direct
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projections to the target tissue; however, the SNS can also
induce these effects indirectly through projections to the
inner part of the adrenal gland called the adrenal medulla.
The cells inside the medulla produce adrenaline which is
secreted and picked up by the circulating blood. This
allows for transmission of adrenaline to the different
target tissues throughout the body [94], amplifying the
effects of SNS activation.

The Role of the HPA Axis in the Stress Response

The HPA axis is an endocrine network in the body that
shapes the stress response by optimizing energy utiliza-
tion. While the ANS and HPA axis have different roles in
the stress response, they both ultimately work to prepare
the body to respond to the stressor. One difference is that
the ANS responds to a stressful situation within seconds
and its activation is relatively short, whereas the HPA axis
responds more gradually and persists beyond the initial
activation [94, 95]. This is due in part to the anatomical
location of the components and because the signals must
travel between parts of the axis through the bloodstream.
In particular, the signaling cascade is initiated in the
hypothalamus, an area of the brain that receives input
from the brainstem and is activated by signals of ho-
meostatic imbalance. Sympathetic neurons within the
brainstem project to and excite neurons in the hypo-
thalamus, leading it to secrete corticotropin-releasing
factor (CRF) that acts on the pituitary gland and sig-
nals the secretion of adrenocorticotropic hormone
(ACTH) [96]. The pituitary is connected to the circu-
latory system, so once the secreted hormone, ACTH,
enters the bloodstream, it is transported throughout the
body. Once it reaches the adrenal gland, it works to
stimulate the synthesis and release of GCs from the outer
adrenal cortex. Interestingly, activation of the HPA axis
does not necessarily require stimulus from sympathetic
neurons and can be activated by both real and predicted
threats. The response to a predicted threat is the body
anticipating homoeostatic imbalance and can be triggered
by species-specific innate fear or through conditioning
and memory [97]. Many of the nodes of the HPA axis can
be inhibited or stimulated by other brain regions, such as
the hippocampus (see Fig. 1) [98, 99], PFC [100], and
amygdala [101, 102]. Generally speaking, the hippo-
campus and PFC inhibit HPA activation and the
amygdala stimulates HPA activation [103] but there are
differences within subregions.

Through pharmacological experiments, scientists have
shown that HPA axis activation during acute stress and

subsequent GC release induces preparation of stored
energy reserves for use and inhibition of glucose (energy)
use in peripheral tissues [104]. This is important for the
body to be prepared to expend energy and act in response
to any threats presented by the stressful situation. One of
the most important functions of GCs (most notably,
cortisol) is regulation of their own secretion at multiple
junctures in the HPA axis through negative feedback
mechanisms [105]. Cortisol has been shown to inhibit
production of both CRF from the hypothalamic para-
ventricular nucleus (PVN) [106, 107] and ACTH from
corticotroph cells of the anterior pituitary [108, 109].
Also, cortisol can act directly on steroidogenic cells within
the zona fasciculata of the adrenal cortex. It is been shown
both in vitro and in vivo that GC presence in the adrenal
gland can limit ACTH-induced cortisol synthesis and
release of GCs [110, 111]. GR is present within these cells,
suggesting a local feedback mechanism driven by acti-
vated GR translocating into the nucleus and modulating
expression of genes regulating steroidogenesis and cy-
toskeleton reorganization [112, 113]. These mechanisms
govern the homeostatic balance of HPA axis activity and
facilitate the basal vicissitudes of GC secretion in
the body.

The HPA Axis and Circadian Rhythm

The circadian rhythm is another important factor that
controls HPA axis activation. Similar to other hormones,
GC release follows a cyclic pattern with peak GC con-
centrations observed at the onset of the active period
(i.e., early morning for diurnal animals, just after sunset
for nocturnal animals) and the trough observed at the
onset of the inactive period (i.e., just after sunset for
diurnal animals, early morning for nocturnal animals).
These rhythms are regulated by “master clock” systems
that include light-sensitive neurons in the retina and the
suprachiasmatic nucleus (SCN) of the hypothalamus.
Neuroendocrine cells in the SCN project to and stimulate
the CRF/arginine-vasopressin-containing neurons of the
PVN to secrete CRF [114], activating the HPA axis
cascade described previously in this review. In addition,
SCN neurons can modulate the sensitivity of the adrenal
gland to ACTH via its connection to preautonomic
neurons of the PVN [115]. Studies transecting splanchnic
nerves observed adrenal glands with decreased sensitivity
to ACTH, implicating the nerve in this pathway [116].

Reciprocally, cyclic GC release facilitates the syn-
chronization of intrinsic molecular patterns. GCs have
been found to regulate transcription of clock proteins

216 Neuroimmunomodulation 2024;31:211–229
DOI: 10.1159/000541592

Kuhn et al.

D
ow

nloaded from
 http://karger.com

/nim
/article-pdf/31/1/211/4306649/000541592.pdf by U

niv. Federal Flum
inense N

ucleo de D
ocum

entacao user on 06 D
ecem

ber 2024

https://doi.org/10.1159/000541592


within peripheral tissues [117], immune cells [118], and
neurons in the PFC [119], hippocampus [120], and
amygdala [121]. Furthermore, the time-of-day-
dependent fluctuations in GC levels in these brain re-
gions lead to changes in formation and elimination of
dendritic spines on neurons [122, 123]. These findings
provide evidence that GCs are critical mediators of
neuron function and behavior across the circadian cycle
[124]. Intriguingly, GC feedback to the SCN appears to be
promoted by astrocytes [125], as SCN neurons of adult
rodents are some of the few cells that do not express
GR [126].

With the integrated physiological actions of circadian
rhythm and HPA axis, it may come as no surprise that
disruptions of the circadian rhythm are associated with
altered HPA axis activity and stress-related psychiatric
disorders. For instance, reduced clock gene mRNA was
observed in postmortem PFC tissue of patients with
MDD [127] and abnormal diurnal cortisol patterns were
observed in patients with PTSD [128]. Other studies have
linked both knockdown of the clock protein and chronic
stress with disruptions in mood-related behaviors
[129, 130].

Stress Interactions with the Peripheral Immune
System

The tie between the nervous system and the immune
system most likely arose as an evolutionary mechanism,
as historical stressors were likely more physically
threatening and may have resulted in injury. In this
context, activation of the immune system following
stressor exposure allows the body to prepare an immune
response to any wounds inflicted and likely would have
promoted survival of the organism [131–133]. To that
point, short-term stress can mobilize immune cells to
enhance innate and adaptive immune responses. For
example, acute stressors have been shown to traffic and
redistribute leukocytes from the blood to organs like the
skin, lymph nodes, and bone marrow [134, 135], and this
enhanced immunity in those organs [136]. Interestingly
though, when stress becomes chronic, it has the para-
doxical effect of suppressing the immune system. Indeed,
a paradigm-shifting study conducted by Dhabhar and
McEwen analyzing an immune response in the pinnae of
rats after stress exposure showed that while acute stress
increased the redeployment of blood lymphocytes to the
pinnae, chronic stress produced the opposite effect – a
decrease in the number of blood leukocytes trafficked to
the pinnae [137]. Reinforcing Selye’s concept of eustress

and distress, this study led to a more nuanced under-
standing of stress effects on immune function in which
short-term stress enhances immune reactivity and long-
term (chronic) stress diminishes immune responsivity. It
was later found that chronic stress also leads to dysre-
gulation of cytokines and related immune responses [138,
139]. So, it has been proposed that the effect of stress on
the immune system is dependent on the type and du-
ration of the stressor [137, 140]. In this context, it is
important to define how individual components of the
stress response (i.e., the ANS and the HPA axis) con-
tribute to differing effects on the peripheral immune
system.

ANS Effects on the Peripheral Immune System

Neuroanatomical studies of innervation of the im-
mune system have demonstrated that the ANS directly
interacts with immune organs, including the thymus
[141], spleen [142], lymph nodes [143], and bone marrow
[144]. This is mainly regarding the SNS, as no evidence
has been found for PNS innervation of immune organs.
Those studies have shown that there are direct sympa-
thetic projections to all primary and secondary immune
organs [145], and it is through these conduits that the
SNS enacts its effects on the peripheral nervous system via
release of catecholaminergic neurotransmitters [146].
Meanwhile, the PNS drives its effects on the peripheral
immune system primarily through stimulation of the
vagus cranial nerve [147].When stimulated, acetylcholine
is released by the efferent arms of the vagus nerve and
binds to cholinergic receptors onmacrophages, inhibiting
cytokine release [148]. Interestingly, the afferent arms of
the vagus nerve respond to fluctuations in peripheral
cytokines, such as tumor necrosis factor (TNF), acting as
a sensor of peripheral immune changes [149]. The
combination of the afferent and efferent vagal fibers
creates a vagal-immune connection called the cholinergic
anti-inflammatory pathway [150, 151].

Stress has been shown to alter both arms of the ANS. In
terms of the SNS, chronic stress increased innervation of
the paracortex of lymph nodes and increased acceleration
of immunopathogenesis [152]. Bone marrow production
of pro-inflammatory monocytes and myeloid-derived
suppressor cells has also shown to be upregulated with
chronic stress – another SNS-induced stress effect [153,
154]. Acute stress has also been shown to cause changes in
immune cell distribution throughout the periphery. One
study in mice subjected to experimental autoimmune
encephalomyelitis showed a reduction of leukocytes in
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the lymph nodes as well as an increase of leukocytes in
bone marrow following acute stress [155]. When it comes
to the PNS, it was found that acute restraint stress was
able to protect mouse kidneys from ischemia-reperfusion
injury via the cholinergic anti-inflammatory pathway and
that C1 neurons of the medulla oblongata were required
for this protective effect [156]. These studies highlight not
only the wide effects stress can have on the periphery, but
the importance that the duration has on the outcome
(acute vs. chronic).

HPA Axis Effects on the Peripheral Immune System

Another function of GC release during chronic stress
involves regulating aspects of peripheral immunity.
Historically, GCs have been characterized as primarily
anti-inflammatory in nature because they are capable of
inducing apoptosis of some immune cells, and synthetic
GCs have been successfully used to treat autoimmune
disorders for many years [157]. Some other examples of
the suppressive nature of GCs include their ability to
inhibit antigen presentation and reduce proliferation of
B cells [95]. However, even though evidence has found an
anti-inflammatory role for GCs, evidence to the contrary
has been found. In some contexts, they can increase the
likelihood of survival of some immune cells [95, 134, 158].
Initial findings suggested that GCs suppress maturation
(negative selection) of T lymphocytes, but further studies
showed that they can also promote maturation of T cells
(positive selection) by working in concert with other
mechanisms of T-cell selection [159]. As previously
mentioned, short-term stress (or short-term increase in
GC secretion) can increase immune reactivity, while
chronic stress (persistent increase in GC secretion) can
dampen immune responses [136, 137]. This is supported
by studies looking at varying levels of GCs; it appears that
it can have opposing roles depending on the concen-
tration administered and the duration of the adminis-
tration [95, 160, 161].

GCs mainly enact their effects via binding to GRs or
mineralocorticoid receptors (MRs) [162] which are ex-
pressed by most cell types in the body [163]. Both GR and
MR are nuclear receptors, meaning after they are bound
by GCs, they translocate to the nucleus to regulate gene
transcription [164]. Activated GR can exert anti-
inflammatory effects through transcriptional regulation
of immune-related genes containing a GC regulatory
element [165]. Another means by which GR can regulate
immune-related transcription is by interfering with pro-
inflammatory transcription factors such as nuclear factor-

κB and activator protein 1 (AP-1) in a process called
tethering [166]. It should be noted that not all GC-
mediated effects are genomic [167]. Non-genomic ef-
fects of GCs such as changes in intracellular calcium and
activation of kinase cascades (MAPK, ERK, etc.) are
regulated by membrane-associated GRs and MRs [168,
169]. Through these mechanisms, GCs can direct cell-
type-specific effects that lead to alterations in both the
innate and adaptive immune systems [170, 171].

This review has extensively covered the effects of GCs
secreted from the adrenal gland following HPA axis
stimulation, but the adrenal gland can release other
soluble factors that regulate immune function, namely,
cytokines. Early studies revealed that stress elicits the
production of interleukin (IL)-18, also known as inter-
feron-ɣ-inducing factor, in the adrenal cortex, which
directly impacts innate and adaptive immune responses
[172–174]. The inactive form of IL-18 is constitutively
synthesized in a variety of cell types including cortical
cells in the zona fasciculata of the adrenal gland [175,
176]. Upon processing primarily done by caspase-1 [177,
178], the mature and biologically active form of IL-18 can
be secreted to bind to IL-18 receptors on target cells. IL-18
receptor signaling is primarily pro-inflammatory as it
stimulates NK-κB-dependent transcription [179]. After
stress exposure, levels of IL-18 and caspase-1 have been
shown to increase in the adrenal gland as well as in
circulating serum levels, suggesting HPA activation leads
to production and secretion of IL-18 from the adrenal
gland [180]. Heightened systemic IL-18 levels are not
only observed following stress, but in patients diagnosed
with MDD as well [181, 182]. These changes in IL-18
signaling may contribute to stress-related changes in
cytokines, which will be discussed in subsequent sections.

Stress, Depression, and Cytokines

Alongside the establishment of multiple neuroimmune
pathways in the 1990s and 2000s [183], evidence began to
show that chronic and severe stress is associated with
altered levels of cytokines such as IL-1β, IL-6, TNF alpha,
and C-reactive protein (CRP) in blood and cerebrospinal
fluid samples [184, 185], and that these changes corre-
sponded with behavioral and cognitive deficits [186].
Multiple studies have shown that many of these same
cytokines are shown to be increased in patients with
stress-related psychiatric disorders such as depression
[187, 188] and PTSD [189, 190].

The first group to study this discovered a correlation
between cytokine levels in the blood and reduced
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hippocampal volume in patients with MDD [191], which
is interesting considering that high levels of cortisol or
inflammatory cytokines have been shown to impair
neuroplasticity in the hippocampus. This work led sci-
entists to perform clinical studies testing anti-
inflammatory interventions for MDD treatment. Initial
studies using infliximab (anti-TNF) [192] and celecoxib
(NSAID) [193] showed modest effects, but post hoc
analyses suggested that those with higher levels of CRP
had higher response rates. Another more recent clinical
study subcategorized the depressive patient group into
the “inflamed depression subgroup” and the “uninflamed
depression subgroup.” They observed that depression was
more severe in the inflamed subgroup and these patients
exhibited increased numbers of several immune cell
subtypes (i.e., monocytes, CD4+ cells, neutrophils) as well
as increased CRP and IL-6 [194]. This evidence all
suggests that not only is immune dysfunction connected
to chronic stress, but that it may be implicated in the
pathophysiology of depression [195].

Stress Effects on Neuroimmune Function

As discussed above, initial studies examined peripheral
immune cells because these samples were readily acces-
sible. However, with advances in preclinical models and
experimental methods, the field began to examine stress
effects on immune function in the brain. Preclinical
studies have found evidence that behavioral and cognitive
changes caused by stress can be prevented via block of
CNS cytokine activity [196, 197]. This work builds on
seminal studies that demonstrated immune responses to
infection drive behavioral alterations, namely, “sickness
behavior” [198–200]. These studies have guided emerging
theories that link dysregulation of peripheral and central
immune systems in the etiology of psychiatric disorders,
particularly MDD [91, 201]. These connections provide
the impetus to study how stress affects immunity in the
brain and determine if it is involved in the link between
immune dysfunction and psychiatric disorders.

Stress-induced dysregulation of neuroimmune func-
tion is in part due to the effects of GCs in the brain. As
stated above, these bind to both GRs and MRs. The fact
that GR and MR have opposing actions explains the
inverse U shape of GR action in which intermediate
(basal) levels of GCs have opposite results from the ex-
treme ends (no GC and high GC). For instance, acute
stress levels of GCs were sufficient and necessary to limit
damage following LPS infusion into the brain [202]
showing that the basal levels of GCs following acute

response are anti-inflammatory in nature [203]. Strik-
ingly, this effect is reversed in chronic stress or high GC
concentrations as GCs appear to exacerbate cytotoxic
inflammation following either physiological stress [204,
205], psychological stress [206], or prolonged exposure to
high levels of GCs [207]. Timing can also determine
whether GCs promote pro- or anti-inflammatory effects,
as it was shown that if stress-like levels of corticosterone
are delivered prior to LPS administration, the immune
response (e.g., IL-1β, TNF alpha, IL-6 cytokine release) is
enhanced in the hippocampus. However, if the stress-like
levels of corticosterone are delivered after LPS admin-
istration, the immune response is reduced [208].

Microglia are brain-resident macrophages with diverse
functions such as surveilling the CNS for pathogens and
maintaining homeostasis through interactions with
neurons, astrocytes, and oligodendrocytes [209]. Origi-
nally thought to switch between a ramified “resting” state
and an ameboid “activated” state, recent studies have
shown heterogenous phenotypes in various contexts,
reflecting the highly dynamic nature of microglia
[210–212]. Stress exposure leads to changes in many
aspects that cause microglia to respond as they attempt to
maintain homeostasis. Acute stress studies have shown
that morphological changes occur in microglia [213], but
that they are not solely dependent on GCs [214]. In
addition to changes in GC signaling [215], microglia have
been found to respond to changes in neuronal activity via
neuron-derived adenosine triphosphate signaling [216]
and changes in norepinephrine concentration [217], both
of which also change in multiple brain regions following
stress [218, 219]. Other studies have implicated microglia
in local cytokine production as the antibiotic minocycline
reduced IL-1β levels in the hippocampus following stress
exposure [220–222].

Contrasting acute stress, chronic stress exposure sees a
decline in beneficial aspects. In response to chronic stress,
higher activated microglia counts are observed (Fig. 1)
[206, 223]. Further studies suppressing microglial acti-
vation found that this manipulation could ameliorate
stress-induced memory deficits following CUS [224].
Furthermore, microglia engulf more dendritic material
following CUS signifying a greater proportion of mi-
croglia are taking on a phagocytic state following stress
[225]. The mechanisms driving increased phagocytosis
are not fully understood, but it is proposed that this may
be a response to physiological changes in neurons and an
attempt to establish homeostatic brain activity [226].

In the healthy brain, neuron-microglia cross-talk is
critical for maintaining the functional surveying state of
microglia [227]. Notably, neurons release several soluble
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factors such as adenosine triphosphate [228], colony-
stimulating factor 1 (CSF1) [229], IL-34 [230], and
fractalkine (CX3CL1) [231] that bind to receptors ex-
pressed by microglia. Disruption of these communication
pathways significantly changes stress effects. Pharma-
cological blockage of P2YR12, a microglial receptor that
facilitates microglial process contact with neurons [232],
results in limited dendritic spine loss on apical dendrites
of pyramidal neurons within the PFC, implicating
P2YR12 as a critical mediator of stress-induced mor-
phological changes [233]. Another important signaling
molecule involved in this cell-cell communication is
CSF1. Exposure to CUS increased neuronal CSF1 levels in
the PFC, and this was associated with microglial
phagocytosis of neuronal elements and decreased den-
dritic spine density. Further studies showed that viral-
mediated knockdown of CSF1 mitigated the synaptic and
behavioral deficits following chronic stress (see
Fig. 1) [62].

As previously discussed, chronic stress can result in
enhanced myelopoiesis [135, 234] and redistributed
immune cells throughout the periphery [154, 235]. Some
studies suggest that these peripheral immune alterations
promote monocyte trafficking to the brain, but this is
observed primarily in the repeated social defeat model
[236]. The presence of peripheral monocytes in stress-
responsive brain regions such as the amygdala and
hippocampus can promote anxiety-like and depressive-
like behavioral responses with stress [237, 238]. Recently,
a study using a social defeat model found that both
circulating monocytes and brain-trafficking monocytes
within stress-susceptible mice exhibited increased ex-
pression of a myeloid-cell-specific proteinase called
matrix metalloproteinase 8 (Mmp8) [239]. More so, they
found thatMmp8 deletion attenuated neurophysiological
and behavioral changes typically observed following
chronic social defeat, further implicating monocytes in
the neurobiology of stress. In contrast, other studies
report that peripheral monocyte recruitment to the brain
is not necessary for the behavioral alterations and mi-
croglial morphological changes that accompany social
defeat exposure [226, 240]. These varied outcomes may
be attributed to differences in stress models as well as
experimental approaches.

Future Research Directions

Historically, microglia were largely regarded as a
homogenous cell population in which each cell can shift
between a “resting” and “activated” form [241]. However,

the past few decades have seen remarkable advancements
in microglia research including recent studies uncovering
the heterogeneity of microglia across different brain re-
gions [242–244] and how they take on specific forms in
response to various diseases [245, 246]. This is relevant
because stress is known to elicit brain region-specific
changes in microglial density and morphology [247].
Further experiments using advanced approaches
(i.e., scRNA-Seq) are needed to define region-specific
microglial responses to stress and to understand their
impact on associated neurobiology. In addition to region-
specific microglia differences, neuronal circuit-specific
stress-induced effects are another growing area of in-
terest. Optogenetic studies stimulating connections be-
tween limbic structures have shown increased neuronal
activity can reduce anxiolytic and depressive phenotypes
induced by chronic stress (see Fig. 1) [248–250]. Con-
tinued studies investigating other connections and cell
types (excitatory vs. inhibitory neurons) are required for
further elucidation of stress-induced circuit-specific
neurobiological changes.

Niches are restricted tissue microenvironments that
maintain adult stem cells [251]. The heterogeneity of bone
marrow and the study of bone marrow niches has been an
emerging area of research for years [252]. Of particular
interest to neuroimmunology, there has been increased
attention given to the connection between the bone
marrow of the skull and the meninges. Recently, with the
use of tissue clearing and whole-body immunolabeling
methods (vDISCO), a subset of short vascular connections
between skull bone marrow and outer surfaces of the
meninges were discovered and coined skull-meninges
connections [253, 254]. Previously, it was thought that
meningeal immune cells, such as myeloid cells and B cells,
were supplied by systemic circulation, but recent devel-
opments have shown that these cells originate from the
bone marrow of the skull [255, 256]. These intriguing
results lead to the question, what role could skull bone
marrow-derived myeloid cells have in the neurobiological
changes associated with stress?

It is critical to point out that many studies highlighted
in this review have been conducted in male rodents.
There is substantial evidence that there are sex differences
in the neurobiological effects of stress [257]. For instance,
neuronal morphology of pyramidal neurons of the PFC
after restraint stress or CUS has been shown to differ by
sex [62, 258]. Microglia transcriptional changes following
stress also appear to be sexually dimorphic [259, 260].
Sex-specific studies have ignited interest in investigating
how sex hormones act as signaling molecules in the brain
[261]. Estradiol has been of particular interest as it was
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shown that estrogen receptors are widely distributed
throughout the brain [262], have neuroprotective effects
[263], and reduce stress effects when administered during
stress regiments [258]. Also, studies investigating in-
trinsic connectivity networks subject to stress-induced
changes [264] such as the default mode network [265],
salience network [266], and executive control network
have shown fluctuations in functional connectivity during
the menstrual cycle [267], a reoccurring process in which
the ovaries secrete varying estradiol levels. However,
other estrogens, androgens, and progestogens, along with
their active metabolites, remain understudied [268]
particularly in neuroimmune and stress contexts.

Conclusion

The goal of this review was to provide historical
context for research in the neurobiology of stress and
psychoneuroimmunology. The studies discussed here
have revealed how neuroimmune systems interface with
the brain to affect behavior, but there is still muchmore to
uncover about the function of these dynamic biological
systems. Technological advancements in research will
lead to new insights, but it is important to consider how
our current work can be informed by or related to past
studies. The history of stress is a collection of individual
observations, some rigorously planned and some seren-
dipitous, but all aid in understanding the physiological
and behavioral changes caused by external pressures and

internal perceptions. These experiences are a funda-
mental part of the human condition and validates our
existence. In the words of Hans Selye, “The absence of
stress is death.”
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